It's the middle of June and temperatures are rising. Greenery is in full swing. Lots of bird-chirping around..However, not something that goes as reinvigorating and cherishing life in environment. Yes, I am talking about radon gas emanating from the soil. June is a month, which marks rise in indoor radon levels, achieving peak by August/September. Because radon is not visible, probably most people tend to underestimate the menace of radon exposure. About 9% of lung cancer mortality and 2% of total cancer-mortality in EU is ascribed to radon exposure. In Sweden, every year 400-500 cases of lung cancer are ascribed to radon exposure. All that has to do is not only with its lung carcinogenicity, but also its presence at varying concentrations in water, food, gas released during shower -all that might have some unknown health implications from mutagenic property of radon.
Here is a figure, where domestic sources of radon are displayed nicely.
Last week, I wrote about uranium mining issue. Radon is closely linked with uranium mining. Since mining ores left after mining constitute source of radon gas in surrounding localities. Scientific evidence is not stronger enough. Recently, weaker correlation has been shown to exist between distance from uranium mines to indoor radon gas levels within surrounding localities. Since carcinogenic lung toxicity is cumulative and it depends on duration and intensity of exposures during lifetime, most study methods face difficulties in figuring out direct relationship between uranium mining and community level health impacts. Although it has been know that there is no safe dose for radon exposure. Based on studies, 200 Bq/m³ in a room with normal occupancy has been conventionally used as a reference action level. That does not mean domestic radon level less than this limit is "safe". One recent study(Darby et al, 2005) estimates 16% higher lung cancer risk with every 100 Bq/m³ increase in domestic radon and suggests possible reference level not above 150 Bq/m³. However, national governments around the world have considerable differences in their radon policies and regulations. Within EU, inter-country variations in radon goals exist. Part of variation can be attributed to the fact that radon is unevenly distributed in soil and ambient levels of radon varies according to geography, giving rise to differences in practicality of goals. My opinion is that in scenario where health effects from radon exposure is similar, geographic differences in air concentrations of radon should be dealt with coherent policy standards.
Over and above this national level policy differences, there is some extent of complacency at public level. More problematic life is for those who live in social housing, since they have to rely on housing landlords for any necessary radon remediation measures.
Talking of permissions for uranium mining is a difficult decision while prevention of associated health risks are in requirement of more effective policy and its implementation.
Sweden has conventionally preferred to rely on imports of uranium for energy production, that has been wise enough to take care of its radon goals. According to latest reports, 9-14% of detached houses in Sweden have radon-level above 200Bq/m³; 394 schools and 218 preschools have been reported with radon level above 200 Bq/m³.
Sweden's latest revival of interest in uranium mining regardless of technological sophistication used, casts doubts on smooth and quick achievability of its radon goals. If uranium mining would start, it would be interesting to see, how far it stays away from causing environmental impacts in Sweden.
Svenska
Juni är en månad, markerar upphov radonnivåer inomhus. Den når en topp i augusti och September.
Eftersom radon syns inte, förmodligen de flesta människor tenderar att underskatta hotet från radon exponering. Cirka 9% av lungcancer dödlighet och 2% av den totala cancerrelaterade dödligheten i EU tillskrivas radon exponering och i Sverige varje år 400-500 fall av lungcancer är tillskrivas radon exponering.
Cancerframkallande lung toxicitet är kumulativa och det beror på varaktighet och intensitet av exponeringar under livstid. Även om, som bygger på studier, 200 Bq/m³ i ett rum med normal beläggning har traditionellt används som en referens nivå. Det betyder inte inhemska radon nivån understiger denna gräns är "säkra". En färsk undersökning (Darby et al, 2005) uppskattar 16% högre risken för lungcancer med 100 Bq/m³ ökad intern radon och föreslår möjliga referensnivån högst 150 Bq/m³. Men nationella regeringar runt om i världen har stora skillnader i deras radon politik och lagstiftning. Inom EU, mellan länder variationer i radon mål finns. Min uppfattning är att i scenario där effekten av radon exponering är liknande, geografiska skillnader i luften av radon bör behandlas med liknande politik ation.
Diskussioner om tillstånd för uranbrytning är ett svårt beslut samtidigt förebygga tillhörande hälsorisker är kravet på en effektivare politik och dess genomförande. Sverige har traditionellt föredragit att förlita sig på import av uran för energiproduktion, som har varit kloka nog att ta hand om sin radon mål. Enligt senaste rapporterna, 9-14% av småhus i Sverige har radon över 200Bq/m3, 394 skolor och 218 förskolor har rapporterats med radon nivå över 200 Bq / m³. Om uranbrytning skulle börja, det skulle vara intressant att se hur långt den förblir borta från orsakar miljöpåverkan i Sverige.
Here is a figure, where domestic sources of radon are displayed nicely.
Last week, I wrote about uranium mining issue. Radon is closely linked with uranium mining. Since mining ores left after mining constitute source of radon gas in surrounding localities. Scientific evidence is not stronger enough. Recently, weaker correlation has been shown to exist between distance from uranium mines to indoor radon gas levels within surrounding localities. Since carcinogenic lung toxicity is cumulative and it depends on duration and intensity of exposures during lifetime, most study methods face difficulties in figuring out direct relationship between uranium mining and community level health impacts. Although it has been know that there is no safe dose for radon exposure. Based on studies, 200 Bq/m³ in a room with normal occupancy has been conventionally used as a reference action level. That does not mean domestic radon level less than this limit is "safe". One recent study(Darby et al, 2005) estimates 16% higher lung cancer risk with every 100 Bq/m³ increase in domestic radon and suggests possible reference level not above 150 Bq/m³. However, national governments around the world have considerable differences in their radon policies and regulations. Within EU, inter-country variations in radon goals exist. Part of variation can be attributed to the fact that radon is unevenly distributed in soil and ambient levels of radon varies according to geography, giving rise to differences in practicality of goals. My opinion is that in scenario where health effects from radon exposure is similar, geographic differences in air concentrations of radon should be dealt with coherent policy standards.
Over and above this national level policy differences, there is some extent of complacency at public level. More problematic life is for those who live in social housing, since they have to rely on housing landlords for any necessary radon remediation measures.
Talking of permissions for uranium mining is a difficult decision while prevention of associated health risks are in requirement of more effective policy and its implementation.
Sweden has conventionally preferred to rely on imports of uranium for energy production, that has been wise enough to take care of its radon goals. According to latest reports, 9-14% of detached houses in Sweden have radon-level above 200Bq/m³; 394 schools and 218 preschools have been reported with radon level above 200 Bq/m³.
Sweden's latest revival of interest in uranium mining regardless of technological sophistication used, casts doubts on smooth and quick achievability of its radon goals. If uranium mining would start, it would be interesting to see, how far it stays away from causing environmental impacts in Sweden.
Svenska
Juni är en månad, markerar upphov radonnivåer inomhus. Den når en topp i augusti och September.
Eftersom radon syns inte, förmodligen de flesta människor tenderar att underskatta hotet från radon exponering. Cirka 9% av lungcancer dödlighet och 2% av den totala cancerrelaterade dödligheten i EU tillskrivas radon exponering och i Sverige varje år 400-500 fall av lungcancer är tillskrivas radon exponering.
Cancerframkallande lung toxicitet är kumulativa och det beror på varaktighet och intensitet av exponeringar under livstid. Även om, som bygger på studier, 200 Bq/m³ i ett rum med normal beläggning har traditionellt används som en referens nivå. Det betyder inte inhemska radon nivån understiger denna gräns är "säkra". En färsk undersökning (Darby et al, 2005) uppskattar 16% högre risken för lungcancer med 100 Bq/m³ ökad intern radon och föreslår möjliga referensnivån högst 150 Bq/m³. Men nationella regeringar runt om i världen har stora skillnader i deras radon politik och lagstiftning. Inom EU, mellan länder variationer i radon mål finns. Min uppfattning är att i scenario där effekten av radon exponering är liknande, geografiska skillnader i luften av radon bör behandlas med liknande politik ation.
Diskussioner om tillstånd för uranbrytning är ett svårt beslut samtidigt förebygga tillhörande hälsorisker är kravet på en effektivare politik och dess genomförande. Sverige har traditionellt föredragit att förlita sig på import av uran för energiproduktion, som har varit kloka nog att ta hand om sin radon mål. Enligt senaste rapporterna, 9-14% av småhus i Sverige har radon över 200Bq/m3, 394 skolor och 218 förskolor har rapporterats med radon nivå över 200 Bq / m³. Om uranbrytning skulle börja, det skulle vara intressant att se hur långt den förblir borta från orsakar miljöpåverkan i Sverige.